Arterial Lines

Helping to prevent a stab in the dark

Reasons for arterial line insertion

- Repeated blood gases required
 - Ventilated patients
 - Respiratory failure
 - Recognised acid base imbalance
- Continuous blood pressure monitoring – Sepsis
 - Ongoing fluid resuscitation
 - Cardiac instability

Arterial Catheter Sites

- Mostly Radial access
 - Advantages:
 - Easy access
 - Easy to identify
 - Easy to insert catheter
 - Minimal immobilisation of site
 - More comfortable than other sites
 - Disadvantages:
 - Thin catheter causing predisposition to overshoot artifact
 - Peripheral access
 → Increase risk of Harmonic amplification
 - Vaso-reactive
- But also femoral, pedal, brachial, axillary access

Allen' Test

- The hand is elevated and the patient/person is asked to make a fist for about 30 seconds.
- Pressure is applied over the ulnar and the radial arteries so as to occlude both of them.
- Still elevated, the hand is then opened. It should appear blanched (pallor can be observed at the finger nails).
- Ulnar pressure is released and the colour should return in 7 seconds.
- If color returns as described above, the Allen's test is considered to be "positive." If color fails to return, the test is considered "negative" and the ulnar artery supply to the hand is not sufficient. The radial artery therefore cannot be safely pricked/cannulated.

Preparation

- Sterile dressing pack
- Sterile gloves
- Chlorhexidine swab
- Local anaesthetic
- Inco sheet
- Catheter set
- Pressure tubing
- Pressure bag
- IV solution

Zeroing & Leveling

- 1. Measure mid thorax
- 2. Identify 4th ICS
- 3. Mark reference position
- 4. Measure pressures supine to 45°

Safety issues

- Keep cannulated limb visible if possible
- Use non IV line caps on ports
- Label tubing and line

Dampening effects

Normal Square Wave Test

- Square wave
 - quickly returns to baseline
- Followed by 1 or 2 bounces
- Bounce < 40 ms
- 2nd bounce <1/3 height of 1st

Critically Damped

- Pressure is accurate
- Number of oscillations should be 1-2 when returns to baseline

Overdamped

- No oscillations when waveform returns to baseline
- Pressure will be underestimated, i.e., lower than actual

Overdampened trace

- Caused by
 - Occluded line
 - Low pressure in bag
 - Innappropriate scale on monitor
 - Air in transducer tubing
- Low cardiac output states
 - Hypovolaemia
 - Vasodilatation
 - Cardiogenic shock

Underdamped

- More than 2 oscillations when returns to baseline
- Pressure will be overestimated, i.e., higher than actual pressure

Avoiding Problems

- Always flush sample port and line after sampling
- Keep all connections tight and ensure stopcocks closes to air
- Don't add extra stopcocks and tubing to lines
- Maintain flush bag at 300mm Hg
- Zero and maintain transducer at level of left atrium (4th intercostal space – mid axilla line

 \bigcirc

 \bigcirc

Pulsus alternans

- Sign of severe left ventricular failure
- Can be exaggerated by anaesthesia when sympathetic tone and contractility is reduced

Pulsus Paradoxus

- Drops in systolic pressure during inspiration
- Often a sign of pericardial constriction (tamponade)
- Can also be seen with airway obstruction and bronchoconstriction.

Systolic Pressure Variation

- Seen during positive pressure ventilation as evidence of hypovolaemia
- Stroke volume variation

What is Blood Pressure

• Defined as resistance (SVR) x flow (CO)

- Normal values:
 - Systolic (100-130mmHg)
 - Diastolic (60 90mmHg)

Cardiac Output (CO)

Determined by -

- Preload (cardiac filling or CVP)
- Myocardial contractility (force of contraction)
- Afterload (resistance to aortic ejection)
- Heart rate

MAP

Adequate organ perfusion depends on a continuous perfusion pressure.

Most organs require a mean blood pressure > 65 mmHg for normal function

Mean BP = diastolic BP + <u>(systolic – diastolic)</u> 3

Not all hypotension is the same

- Mr Brown is hypotensive and tachycardic with warm extremities
- Mrs Clark is hypotensive and tachycardic with cold clammy extremities
- Mr Wall is hypotensive and bradycardia with cool extremities

Do we treat them all the same?

Shock Categories (P.R.O.V.V)

- Pump problems (cardiogenic)
- Rate and rhythm (cardiogenic)
- Obstructions (obstructive)
- Volume (hypovolaemic)
- Vasodilatation (distributive)

General response to shock

- Sympathetic response
 - Pump Increased cardiac contractility
 - Rate Tachycardia
 - Vasculature Vasoconstriction
- Increased respiratory rate
- Pupillary dilation
- Sweating

Limiters of shock response

- Bradycardia (heart blocks)
- Vasodilatory states (sepsis, anaphylaxis)
- Medication (beta blockers)

Dangers of shock response

- Increased contractility and heart rate
 - Increase myocardial oxygen demand
 - May lead to myocardial ischaemia/infarction
- Increased vasoconstriction
 - Reduction in tissue perfusion
 - Decreased organ perfusion
 - Acidosis

Untreated shock leads to

Release of cytotoxic and vasodilatory substances (lots of bad stuff that causes-)

- Progressive vasodilatation
 - Overly wide pipes
- Increased capillary permeability

 Leaky pipes
- Intravascular coagulation – Sticky blocked pipes
- Myocardial depression
 A sad pump

Optimising perfusion

- Increase circulating volume
- Manipulate autonomic nervous system to affect

Alpha effects

- Vessel tone (vasoactive pressors)

Beta 1 effects

- Cardiac contractility (inotropic)
- Heart rate (chronotropic)

Beta 2 effects

- Broncho dilation
- Vasodilation

Perfusion drugs -Sympathomimetic

- Adrenaline
- Noradrenaline
- Phenylephrine
- Ephedrine
- Dobutamine
- Dopamine
- Isoprenaline

Choice determined by desired amount of alpha and beta effects required.

				Tabl	e				
Summary of Common Vasoactive Agents									
Drug	Mean Arterial Pressure	Cardiac Output	Pulmonary Capillary Wedge Pressure	Systemic Vascular Resistance	Typical Dose	Receptors	Mechanism of Action		
Dopamine			2.000 L		5-20 mcg/kg/min				
0.5-2 mcg/kg/min	↔	Ť	↓/↔	↔		$D_{1'}\beta_{1'}\beta_2$	Vasodilation of renal, mesen- teric, and coronary arteries		
2-10 mcg/kg/min	t	t		t		$\boldsymbol{\alpha}_{l}, \boldsymbol{D}_{l}, \boldsymbol{\beta}_{l}, \boldsymbol{\beta}_{2}$	Increases myocardial contrac- tility, heart rate, and cardiac output; mild vasodilatory effects with preserved dopa- minergic activity		
10-20 mcg/kg/min	t	t		t		$\boldsymbol{\alpha}_{l'} \boldsymbol{D}_{l'} \boldsymbol{\beta}_{l'} \boldsymbol{\beta}_{2}$	Peripheral vasoconstriction with preserved inotropic and chonotropic effects		
Norepinephrine	t	t		t	2-30 mcg/min	α ₁ , β ₁	Vasoconstriction and in- creased cardiac contractility		
Phenylephrine	1	↔	↔	t	40-200 mcg/min	α ₁	Arterial vasoconstriction		
Dobutamine		t	ţ	Ţ	5-15 mcg/kg/min	$\beta_1,$ mild β_2	Increases cardiac contractility with mild vasodilation		
Epinephrine	1	Ť	÷	t	2-10 mcg/min	$\boldsymbol{\alpha}_{1},\boldsymbol{\beta}_{1},\boldsymbol{\beta}_{2}$	Peripheral vasoconstriction, increased cardiac contractil- ity, smooth muscle relaxation		
Vasopressin	1	Ŧ	1/**	r	0.01-0.04 units/ min	$V_{\mu'}V_{2'}V_3$	Vasoconstriction of the vascu- lar smooth muscle		

Circulatory Failure

Not all hypotension is the same

- Mrs Brown is hypotensive and tachycardic with warm extremities
- Mrs Clark is hypotensive and tachycardic with cold clammy extremities
- Mr Wall is hypotensive and bradycardic with cool extremities

Do we treat them all the same?

Arterial Blood Gases

Matching the numbers to the clinical picture

Not all tachypnoea is the same

- Mr Blue is tachypnoeic and centrally cyanosed.
- Mr Scarlett is tachypnoeic and flushed
- Mrs White is tachypnoeic and pale
- Mr Edge is tachypnoeic and peripherally cyanosed

Are they all in respiratory failure?

Blood gases-Why the Big Deal?

They give us so much information about –

- Respiratory function
- Metabolic function
- Acid / Base balance in blood
- Bodies response to acid base imbalances
- Severity of illness
- Is the patient getting better or worse?

Blood Gas Values						
pнH	7.410		† 7,3	50 -	7.450	1
µСО,	43.0	mmHg	[34	5.0 -	45.0	1
μO,	86.6	mmHg	[80	0.0 -	100	j
eHCO _a rr(P) _C	26.7	mmoVL	-			-
<1CO _s (B) _C	24.1	mmol/L				
cBase(B) _C	2.3	rmmol/L				
2 (O ₂	97.3	%				
Electrolyte Values						
c:Net	139	mmol/L				
c4C*	3.9	immol/4				
cGlu	5.4	mmoWL				
cLác	0.4	mmoML				
Oximetry Values						
<i>c</i> tHb	122	g/L	(1	20 -	175	1
Hete	37.4	9%				-
FO _p Hb _P	96.5	%	(96	s.o -		1
µ50 ₉	26,41	mmHg				-
$ ho$ 50(st) $_{d}$	26.84	mmHg				
μ 50(T) $_{\Theta}$	26.41	mmHg				
Temparature Corre	cted Valu	89				
pH(T)	7,410					
$\mu CO_{d}(T)$	43.0	mmHg				
$\mu O_{2}(T)$	86.6	mmHg				
Notes			likini ka shekara			
d Default val.	/ei(s)					
.c Calcurated	value(s)					
P Estimated v	/elue(s)					

1

Production of acids

- Metabolic processes produce acids as byproducts
- Higher the metabolic rate the greater production of acids.
- 2 types of acids produced
- Volatile acids
 - CO2 -able to cross alveolar capillary membrane and can be regulated primarily by respiration
- Fixed or non volatile acids
 - are regulated by the kidneys because they can only be excreted in solution

Respiratory & renal regulation

 $H_2O + CO_2 \rightarrow H_2CO_3 \rightarrow H^+ + HCO_3$

Respiratory component

* Rapid response

Renal component

* Delayed response

(c) 1997-2002 David W. Weedruff

Normal blood gas values

- pH 7.35 7.45
- PO2 80 100 mmHg
- PCO2 35 45 mmHg
- HCO3 22 26 m Eq/litre
- BE -2 +2
- %O2 Sat 95 or greater

Blood gas analysis Acid versus base (alkaline) рΗ 7.4 PaCO₂ 35 – 45 HCO₃ 22 – 26

ABG interpretation

Step 1

Consider each value independently pH PaCO₂ HCO₃

Is the value normal Is it an acid *or* Is it a base

Eg pH 7.2PaCO₂ 50 HCO₃ 33

Reference Ranges:					
pH	7.35-7.45				
pC02	35-45 mmHg				
H003	22-26 mEq/L				
p02	80-100 mmHg				
02 Sat	95-100%				

Step 1pH7.2acid $PaCO_2$ 50acid HCO_3 33base

Step 2

Look at pH to determine the nature of the imbalance acidosis or alkalosis

pН 7.20 acid (acidosis) Reference Ranges: 7.35-7.45 DH 35-45 mmHg pC02 pH 7.44 eg H003 22-26 mEq/L pН 7.18 p02 80-100 mmHg 02 Sat 95-100%

Step 2

determine imbalance - acidosis or alkalosis

рН	7.2	acid (acidosis)		
	50	ooid	Referen	ce Ranges:
Fac02	50	aciu	pH	7.35-7.45
HCO ₂	33	base	pC02	35-45 mmHg
5			H003	22-26 mEq/L
			p02	80-100 mmHg
			02 Sat	95-100%

Step 3

now determine if the problem is respiratory or metabolic by looking at value with same status as pH

• If HCO₃ ===> metabolic

Recapping

Step 1

Consider each value independently

- is it acid or base

Step 2

Look at pH to determine the nature of the imbalance - is it acidosis or alkalosis

Step 3

Determine if the problem respiratory or metabolic – which value matches the pH

examples

pН	7.18	pH 6.85	pH 7.56
PaCO ₂	65	$PaCO_2$ 26	$PaCO_2$ 22
HCO ₃	24	HCO ₃ 8	$HCO_3^{-}25$

Compensation

Step 4

Determine level of compensation

is compensation absent, partial or complete?

рН	7.2	acid
PaCO ₂	50	acid
HCO ₃	33	base

Do this by looking at the value that does not match the pH

Is this within normal limits?

- if yes no compensation has occurred
- if outside normal limits some compensation has occurred

Compensation

Step 4 cont.

now determine if compensation is partial or complete

рН	7.2	base
PaCO ₂	50	acid
HCO ₃	33	base

Partial

- if the value that doesn't match the pH is outside normal limits and the pH is also outside normal limits then partial compensation has occurred

Complete

- if the value that doesn't match the pH is outside normal limits and the pH has returned to normal limits then complete compensation has occurred

Compensation absent, partial or complete

examples

рН	7.18	acid
PaCO ₂	65	acid
HCO ₃	24	normal
рН	6.85	acid
PaCO ₂	29	base
HCO ₃	8	acid
pH 7	7.45	base
PaCO ₂	50	acid
HCO ₃	33	base

Reference Ranges:

pH	7.35-7.45
pC02	35-45 mmHg
HCO3	22-26 mEq/L
p02	80-100 mmHg
02 Sat	95-100%

Case A (anterior non-STEMI)

Mr Blue 84 yrs old

- Hypotensive BP 78/50
- Tachycardia 120
- Crackles in his bases
- Pulmonary oedema on X-ray
- Cool dusky peripheries

Case A

ABG result

pH 7.3 PaCO₂ 26 mmHg PaO₂ 75 mmHg HCO₃ 18 mmol/L SaO₂ 92%

Lactate 2.4

Your interpretation -

Circulatory Failure

				Tabl	e				
Summary of Common Vasoactive Agents									
Drug	Mean Arterial Pressure	Cardiac Output	Pulmonary Capillary Wedge Pressure	Systemic Vascular Resistance	Typical Dose	Receptors	Mechanism of Action		
Dopamine			2.000 L		5-20 mcg/kg/min				
0.5-2 mcg/kg/min	↔	Ť	↓/↔	↔		$D_{1'}\beta_{1'}\beta_2$	Vasodilation of renal, mesen- teric, and coronary arteries		
2-10 mcg/kg/min	t	t		t		$\boldsymbol{\alpha}_{l}, \boldsymbol{D}_{l}, \boldsymbol{\beta}_{l}, \boldsymbol{\beta}_{2}$	Increases myocardial contrac- tility, heart rate, and cardiac output; mild vasodilatory effects with preserved dopa- minergic activity		
10-20 mcg/kg/min	t	t		t		$\boldsymbol{\alpha}_{l'} \boldsymbol{D}_{l'} \boldsymbol{\beta}_{l'} \boldsymbol{\beta}_{2}$	Peripheral vasoconstriction with preserved inotropic and chonotropic effects		
Norepinephrine	t	t		t	2-30 mcg/min	α ₁ , β ₁	Vasoconstriction and in- creased cardiac contractility		
Phenylephrine	1	↔	↔	t	40-200 mcg/min	α ₁	Arterial vasoconstriction		
Dobutamine		t	ţ	Ţ	5-15 mcg/kg/min	$\beta_1,$ mild β_2	Increases cardiac contractility with mild vasodilation		
Epinephrine	1	Ť	÷	t	2-10 mcg/min	$\boldsymbol{\alpha}_{1},\boldsymbol{\beta}_{1},\boldsymbol{\beta}_{2}$	Peripheral vasoconstriction, increased cardiac contractil- ity, smooth muscle relaxation		
Vasopressin	1	Ŧ	1/**	r	0.01-0.04 units/ min	$V_{\mu'}V_{2'}V_3$	Vasoconstriction of the vascu- lar smooth muscle		

Case B

Mrs Scarlett 57 yrs (cellulitis left leg)

- Hypotensive BP 78/50
- Tachycardia 120
- Warm peripheries
- Resp rate 28
- Chest clear on X-ray

Case B

ABG result

pH 7.2 PaCO₂ 26 mmHg PaO₂ 100 mmHg HCO₃ 16 mmol/L SaO₂ 97%

Lactate 4.3

Your interpretation -

Circulatory Failure

				Tabl	e				
Summary of Common Vasoactive Agents									
Drug	Mean Arterial Pressure	Cardiac Output	Pulmonary Capillary Wedge Pressure	Systemic Vascular Resistance	Typical Dose	Receptors	Mechanism of Action		
Dopamine			2.000 L		5-20 mcg/kg/min				
0.5-2 mcg/kg/min	↔	Ť	↓/↔	↔		$D_{1'}\beta_{1'}\beta_2$	Vasodilation of renal, mesen- teric, and coronary arteries		
2-10 mcg/kg/min	t	t		t		$\boldsymbol{\alpha}_{l}, \boldsymbol{D}_{l}, \boldsymbol{\beta}_{l}, \boldsymbol{\beta}_{2}$	Increases myocardial contrac- tility, heart rate, and cardiac output; mild vasodilatory effects with preserved dopa- minergic activity		
10-20 mcg/kg/min	t	t		t		$\boldsymbol{\alpha}_{l'} \boldsymbol{D}_{l'} \boldsymbol{\beta}_{l'} \boldsymbol{\beta}_{2}$	Peripheral vasoconstriction with preserved inotropic and chonotropic effects		
Norepinephrine	t	t		t	2-30 mcg/min	α ₁ , β ₁	Vasoconstriction and in- creased cardiac contractility		
Phenylephrine	1	↔	↔	t	40-200 mcg/min	α ₁	Arterial vasoconstriction		
Dobutamine		t	ţ	Ţ	5-15 mcg/kg/min	$\beta_1,$ mild β_2	Increases cardiac contractility with mild vasodilation		
Epinephrine	1	Ť	÷	t	2-10 mcg/min	$\boldsymbol{\alpha}_{1},\boldsymbol{\beta}_{1},\boldsymbol{\beta}_{2}$	Peripheral vasoconstriction, increased cardiac contractil- ity, smooth muscle relaxation		
Vasopressin	1	Ŧ	1/**	r	0.01-0.04 units/ min	$V_{\mu'}V_{2'}V_3$	Vasoconstriction of the vascu- lar smooth muscle		

Case C

Mrs Gasp 75 yrs old

- Hypotensive BP 88/50
- Tachycardia 130
- Temp 38.5
- Drowsy
- Resp rate 30
- Poor air entry to bases
- Basal consolidation on X-ray

Case C

ABG result

pH 7.15 $PaCO_2$ 80 mmHg PaO_2 65 mmHg HCO_3 30 mmol/L SaO_2 86%

Your interpretation –

Ideal mangement

Circulatory Failure

				Tabl	e				
Summary of Common Vasoactive Agents									
Drug	Mean Arterial Pressure	Cardiac Output	Pulmonary Capillary Wedge Pressure	Systemic Vascular Resistance	Typical Dose	Receptors	Mechanism of Action		
Dopamine			2.000 L		5-20 mcg/kg/min				
0.5-2 mcg/kg/min	↔	Ť	↓/↔	↔		$D_{1'}\beta_{1'}\beta_2$	Vasodilation of renal, mesen- teric, and coronary arteries		
2-10 mcg/kg/min	t	t		t		$\boldsymbol{\alpha}_{l}, \boldsymbol{D}_{l}, \boldsymbol{\beta}_{l}, \boldsymbol{\beta}_{2}$	Increases myocardial contrac- tility, heart rate, and cardiac output; mild vasodilatory effects with preserved dopa- minergic activity		
10-20 mcg/kg/min	t	t		t		$\boldsymbol{\alpha}_{l'} \boldsymbol{D}_{l'} \boldsymbol{\beta}_{l'} \boldsymbol{\beta}_{2}$	Peripheral vasoconstriction with preserved inotropic and chonotropic effects		
Norepinephrine	t	t		t	2-30 mcg/min	α ₁ , β ₁	Vasoconstriction and in- creased cardiac contractility		
Phenylephrine	1	↔	↔	t	40-200 mcg/min	α ₁	Arterial vasoconstriction		
Dobutamine		t	ţ	Ţ	5-15 mcg/kg/min	$\beta_1,$ mild β_2	Increases cardiac contractility with mild vasodilation		
Epinephrine	1	Ť	÷	t	2-10 mcg/min	$\boldsymbol{\alpha}_{1},\boldsymbol{\beta}_{1},\boldsymbol{\beta}_{2}$	Peripheral vasoconstriction, increased cardiac contractil- ity, smooth muscle relaxation		
Vasopressin	1	Ŧ	1/**	r	0.01-0.04 units/ min	$V_{\mu'}V_{2'}V_3$	Vasoconstriction of the vascu- lar smooth muscle		

Case scenarios

Case 1

A 10 year old boy arrives Hx increasing SOB over last week, now feverish and has moist unproductive cough

Vital signs

- Temp 39° C
- HR 120
- BP 90/60
- RR 46
- SpO₂ 93% on 10 L oxygen via non-rebreather mask

Impression – possible pneumonia

ABG result

pH 7.47 PaCO₂ 26 mmHg PaO₂ 55 mmHg HCO₃ 20 mmol/L SaO₂ 90%

Your interpretation -

A 12 year old girl is admitted with drowsiness and abdo pain

ABG on air

рН	6.9
PaCO ₂	17 mmHg
PaO ₂	92 mmHg
HCO ₃	12 mmol/L
SaO ₂	96%

Interpretation -

An unconscious 30 year old with tricyclic OD responding only to pain is admitted, intubated & ventilated in ED

ABG 30 mins after intubation

рН	7.1
PaCO ₂	47 mmHg
PaO ₂	360 mmHg
HCO ₃	18 mmol/L
SaO ₂	100%

your interpretation -

An unconscious 43 year old post head trauma and responding only to pain is admitted, intubated & ventilated in ED

ABG 30 mins after intubation

рН	7.50
PaCO ₂	22 mmHg
PaO_2	560 mmHg
HCO ₃	25 mmol/L
SaO_2	100%

your interpretation -

A 6 year old girl involved in an MVA is brought in unconscious, she is intubated, her cardiac rhythm and absence of pulse indicates PEA and CPR is in progress. Initial ABG

- pH 7.1
- $PaCO_2$ 10 mmHg
- PaO_2 34 mmHg
- HCO₃ 18 mmol/L
- SaO₂ 67%

Your interpretation -

A 75 year old woman wpost op from repair of a # left tib and

fib requiring regular morphine has become increasingly drowsy

ABG result

- pH 7.28
- PaCO₂ 70 mmHg
- PaO₂ 70 mmHg
- HCO₃ 30 mmol/L
- SaO₂ 92 %

11 year old with paralytic ileus 3 days post appendectomy. Nasogastric tube insitu with large outputs.

ABG	
рН	7.48
PaCO ₂	49 mmHg
PaO_2	95 mmHg
HCO ₃	32 mmol/L
SaO_2	97%
—	